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ABSTRACT: With several seasons of Geostationary Lightning Mapper (GLM) data, this work revisits incorporating
lightning observations into operational tropical cyclone rapid intensification guidance. GLM provides freely available, real-
time lightning data over the central and eastern North Pacific and North Atlantic Oceans. A long-term lightning dataset is
needed to use GLM in a statistical–dynamical operational application to capture the relationship between lightning and
the rare occurrence of rapid intensification. This work uses the World Wide Lightning Location Network (WWLLN) data-
set from 2005 to 2017 to develop lightning-based predictors for rapid intensification guidance models. The models mimic
the operational Statistical Hurricane Intensity Prediction Scheme Rapid Intensification Index and Rapid Intensification
Prediction Aid frameworks. The frameworks are averaged to form a consensus as a means to isolate the impact of the light-
ning predictors. Two configurations for lightning predictors are assessed: a spatial configuration with 0–100-km inner core
and 200–300-km rainband area for the preceding 6-h predictors and a temporal configuration with an inner core only
for the preceding 0–1, 0–6, and 6–12 h. When tested on the 2018–21 seasons, the temporal configuration adds skill pri-
marily to the 12–48-h forecasts when compared to the no-lightning version and rapid intensification operational con-
sensus. When WWLLN is replaced with GLM, minor changes to the prediction are observed suggesting that this
approach is suitable for operational applications and provides a new baseline for tropical cyclone lightning-based
rapid intensification aids.

SIGNIFICANCE STATEMENT: The forecasting of rare, yet critical, tropical cyclone rapid intensification events
continues to be challenging. The current operational tools to anticipate rapid intensity changes use a combination of
numerical weather prediction–derived environmental conditions and satellite-based cloud top temperature variations of
deep convection. Here, we use freely available Geostationary Lightning Mapper data, which provide independent informa-
tion about convection, in similar intensity guidance frameworks using temporal and spatial aspects of lightning variability.
Our results show an improvement in short-term (12–48 h) rapid intensification forecasts by using temporal lightning infor-
mation, and our investigation highlights that users of Geostationary Lightning Mapper lightning information should be cog-
nizant of the influence and impact of land on these observations.

KEYWORDS: Lightning; Tropical cyclones; Forecast verification/skill; Operational forecasting; Intensification;
Machine learning

1. Introduction

Lightning observations provide valuable information over
the open ocean. In oceanic regions, lightning observations are
one of the few direct measurements of convective activity
(Mauchly 1923; MacGorman and Rust 1998). Lightning sup-
plies unique, indirect information about the dynamics and mi-
crophysics of small-scale convection (for examples of this in
data assimilation, see Mansell et al. 2007; Fierro et al. 2019).

In aggregate, lightning flashes highlight a response to environ-
mental conditions. For tropical cyclones, large- and convective-
scale lightning activity measures might be useful for diagnosing
structural and intensity changes. While intensity forecasts are
improving, the tropical cyclone community shows that rapid in-
tensification remains a forecast challenge (DeMaria et al. 2014,
2021) and continues to focus on forecast improvement efforts
(Gall et al. 2013; Marks et al. 2018). While the definition for
rapid intensification is arbitrary, the community applies this
term to the tail of the intensity change distribution within a ba-
sin, the 95th percentile of intensification rates}30 kt in 24 h
(15.4 m s21; 1 kt 5 0.514 m s21) in the North Atlantic Ocean
basin (Kaplan and DeMaria 2003). To improve critical rapid in-
tensification forecasts through incorporating measures of con-
vection, the tropical cyclone community is exploring applications
of lightning data. Following Alexander et al. (1999), Apodaca
et al. (2014) use and assess the impact of lightning observations
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in data assimilation systems for mesoscale modeling in improv-
ing the representation of deep convection.

In preparation for the Geostationary Lightning Mapper
(GLM) instrument on the Geostationary Operational Environ-
mental Satellite (GOES) R-series satellites [for details about
the instrument, see Goodman et al. (2013)], DeMaria et al.
(2012) test lightning-based predictors in the Statistical Hurri-
cane Intensity Prediction Scheme (SHIPS) Rapid Intensifica-
tion Index (SHIPS-RII; Kaplan and DeMaria 2003). The
authors use land-based lightning detection network data from
the World Wide Lightning Location Network (WWLLN).
With data collection beginning in the early 2000s, WWLLN is
one of the longest, continually operated ground-based lightning
network datasets available (e.g., Lay et al. 2004; Rodger et al.
2005, 2006). Through a prolonged period of data collection,
WWLLN captures convective information for rare events like
tropical cyclone rapid intensification. In the DeMaria et al.
(2012) work, the authors show that inner-core lightning activity
(defined as the preceding 6-h density of WWLLN strokes inside
a radius of 100 km of the storm center) correlates with rapid
weakening for North Atlantic hurricanes and rainband area
lightning activity (defined as the density in a 200–300-km annu-
lus around the storm center) correlates with average- and
rapid-intensity increases. Since lightning is associated with deep
convection, their findings for the rainband area are perplexing
because these findings do not align with theoretical ideas (e.g.,
Schubert and Hack 1982) nor convective-based observational
studies (e.g., Rogers et al. 2012, 2013) for rapid intensification.
However, their work suggests that lightning predictors capture
both the large-scale environmental influences in addition to
convective indicators of rapid intensification in the inner
core. For the inner core, the DeMaria et al. (2012) conclu-
sions are consistent with early work on tropical cyclone
lightning (Molinari et al. 1994, 1999; Black and Hallett
1999) indicating that tropical cyclone lightning activity
rarely occurs within 100 km of the center of a tropical cy-
clone. The rarity of lightning in the tropical cyclone eyewall
is due to the rarity of intense updrafts with vertical veloci-
ties exceeding 10 m s21 in the presence of supercooled water
(Black and Hallett 1999). Also, the DeMaria et al. (2012) re-
sults are comparable to studies (e.g., Jiang and Ramirez
2013; Stevenson et al. 2016; Xu et al. 2017) that show a spike
in lightning in the inner core could signify weakening. But,
the DeMaria et al. (2012) results are inconsistent with some
studies that suggest an outbreak of lightning in the inner-core
signals rapid intensification (Molinari et al. 1994; Price et al.
2009; Pan et al. 2010, 2014; Abarca et al. 2011; Stevenson et al.
2014; Zhang et al. 2015; Zawislak et al. 2016; Vagasky 2017;
Fierro et al. 2018). And the inner-core lightning relationship
to intensity change is sensitive to the placement of convective
updrafts and lightning bursts relative to the radius of maxi-
mum wind (Rogers et al. 2012, 2013, 2016; Stevenson et al.
2018).

The contradictions between lightning studies are problem-
atic, especially when trying to develop and transition a stable
rapid intensification aid to operations. Despite the conflicted
conceptual model of how lightning relates to tropical cyclone
intensity changes, we believe that the selection of dataset,

stratification of data, and criteria for case inclusion and dura-
tion could explain many of the discrepancies. Here, we do not
try to unearth a unifying theory for lightning and tropical cy-
clones. However, now that we have more lightning data, we
want to understand how area lightning density predictors cap-
ture changes in lightning activity in the tropical cyclone inner-
core area and in the tropical cyclone environment during
rapid intensification.

We cover the datasets used in our implementation of lightning-
based rapid intensification guidance in section 2. We revisit
the operational approach proposed by DeMaria et al. (2012)
by calculating inner-core and rainband area lightning predictors
as well as calculating new time-lagged metrics in section 3. In cal-
culating both the metric formulation proposed by DeMaria et al.
(2012) and the time-lagged formulation, we assess the role of the
rainband predictors and their relationship to land. In section 4,
we outline the rapid intensification guidance frameworks and
training procedures. Here, we use theWWLLN dataset for train-
ing because the period of record from GOES-16/GOES-17
GLM currently is not long enough to be statistically robust.
In section 5, we evaluate the performance using the 2018–21
training dataset using the WWLLN data and discuss the differ-
ences between the DeMaria et al. (2012) spatial configura-
tion that uses inner-core and rainband lightning density and
the temporal configuration proposed here. Because the guid-
ance will use GLM in real time for operations, we compare
WWLLN and GOES-16 GLM-based predictors and evalu-
ate these predictors during the 2018–21 seasons in section 6.
This comparison aids in understanding the merit for transi-
tioning a rapid intensification aid with GLM lightning-based
predictors to operations. Section 6 also discusses the indepen-
dent performance of the temporal configuration of the lightning-
based guidance that ran experimentally at the National Hurricane
Center during the 2022 North Atlantic and eastern North
Pacific hurricane seasons. We believe that this work high-
lights the value that GOES-16/GOES-17 GLM lightning pre-
dictors provide in an updated baseline for the operational
lightning applications for tropical cyclones, and we discuss
potential future extensions in our discussion and conclusions,
section 7.

2. Data

We focus on tropical systems that are within the eastern and
central North Pacific and North Atlantic. To represent tropical
cyclone characteristics and lightning, we employ four datasets:
1) Automated Tropical Cyclone Forecast (ATCF) system best
track and probability-aids (i.e., “e-deck”) database, 2) opera-
tional and developmental SHIPS large-scale environmental
diagnostic dataset, 3) WWLLN data, and 4) GOES GLM
data.

a. Tropical cyclone characteristics data

1) AUTOMATED TROPICAL CYCLONE

FORECAST DATABASE

The ATCF system (Sampson and Schrader 2000; NRL 2020)
combines forecaster information generated by the National
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Hurricane Center and Central Pacific Hurricane Center to sup-
ply estimates of storm location and intensity. Here, we extract
values from the best track and probability-aid databases. From
the best track database, we use the position, intensity (i.e.,
maximum sustained 1-min averaged wind), and 12-h intensity
change (persistence). The top third of Table 1 has the storm
characteristics taken from the ATCF database, variable units,
and a description. The ATCF best track database intensity esti-
mates have uncertainties (Landsea and Franklin 2013; Torn and
Snyder 2012; Combot et al. 2020) that have implications for ma-
chine learning applications (Bonfanti et al. 2018; Kumler-Bonfanti
et al. 2020). In addition to the best track database, we use the
probability-aid database to extract operational rapid intensifica-
tion consensus (RIOC; Kaplan et al. 2015; DeMaria et al. 2021)
forecasts during the 2018–21 seasons to use as a reference or base-
line model. RIOC averages the current operational SHIPS-RII
linear discriminant analysis model, a logistic growth equation
model, and the Rozoff and Kossin (2011) naïve Bayesian model.

2) SHIPS LARGE-SCALE DIAGNOSTIC DATASET

The large-scale diagnostic files provide the SHIPS-RII
guidance with storm environment and convective context.
The large-scale diagnostic algorithm calculates environmental
quantities from global numerical weather prediction models,
mainly the Global Forecast System, and convective parame-
ters from operational geostationary satellites.

The diagnostic algorithm azimuthally averages quantities us-
ing storm-centric, area-weighted annuli, the bounding radii of
which change depending on the parameter and the perceived
physical impact to storm intensity. DeMaria and Kaplan (1994)
outline how the algorithm formulates calculations for each vari-
able, which is like the current operational SHIPS model with
additions and changes based on advances by the research com-
munity and parameter performance in operations. To give the
community a consistent dataset, the SHIPS Developmental Da-
taset contains the current suite of environmental and convective
predictors from 1982 to present (RAMMB 2021). While consis-
tent in form, the SHIPS Developmental Dataset contains inho-
mogeneities associated with upgrades to the operational Global
Forecast System. Slocum et al. (2022) explore and quantify
these inhomogeneities by using the SHIPS Developmental
Dataset and model diagnostics calculated from the European
Centre for Medium-Range Weather Forecasts fifth-generation
atmospheric reanalysis (Hersbach et al. 2020). The authors
show that the mean and median deviations of the developmen-
tal dataset quantities are relatively stable over the period used
here with the standard deviation decreasing over time. Slocum
et al. (2022) also highlight how tropical cyclone position errors
impact diagnostic quantities like generalized wind shear, where
0.18 displacement can result in 0.5-kt shear differences. In addi-
tion to the developmental dataset, we use the operational
North Atlantic and eastern and central North Pacific large-scale
SHIPS diagnostic files during the 2018–21 seasons. Because ad-
ditional variability arises from using the operational track and
intensity analysis errors in the working best track data, we use
the operational SHIPS diagnostics files to assess real-time per-
formance and capture algorithm behavior in operations. We

note that verification uses the postseason final best track inten-
sity values.

b. Lightning observations

Here, we want to leverage GLM because of its availability
for operations. But, because GLM is a recent addition and we
need a long training dataset to develop a statistical–dynamical
rapid intensification product, we combine GLM with WWLLN.

1) WORLD WIDE LIGHTNING LOCATION NETWORK

The WWLLN (Lay et al. 2004) detects cloud-to-ground and
intracloud lightning and is one of the longest-operating ground-
based lightning networks. The network serves as a baseline for
lightning products as a result. Like other ground-based light-
ning networks, the WWLLN lightning detection efficiency
decreases over the ocean. DeMaria et al. (2012) find that detec-
tion improves as the number of stations increased from the
early to late 2000s. Using the Lightning Imaging Sensor on
NASA’s Tropical Rainfall Measuring Mission climatology from
Cecil (2001), the authors create a seasonal correction for the
WWLLN dataset to account for the decreased detection effi-
ciency. Here, we apply the bias correction approach outlined by
Stevenson et al. (2018) and the seasonal correction adjustment
factors from 2005 to 2020 for the North Atlantic Ocean, eastern
and western North Pacific Ocean basins (Fig. 1). Since the east-
ern and central North Pacific basins rapid intensification algo-
rithm is the same, we assume that the eastern North Pacific
adjustment factors are characteristic of the central North Pacific
while the western North Pacific might be more endemic}as
global geostationary lightning measurements become avail-
able, the assumption for how lightning needs to be corrected
to align with seasonal climatology can be revisited. This ap-
proach produces different, but similar values to those in Table 1
of DeMaria et al. (2012). In recent years, the basins show that
the WWLLN adjustment factors level off to a value between two
and four.

2) GOES-R GEOSTATIONARY LIGHTNING MAPPER

The GLM is an optical sensor on the R-series of the GOES
intended to detect total lightning (i.e., cloud-to-ground and in-
tracloud). The GLM instrument measures reflectance in the
oxygen band with a central wavelength of 0.7774 mm at a 2-ms
frame rate. To detect lightning, the processing algorithm calcu-
lates the difference between pairs of images and compares
pixel values to background climatology. The resulting product
denotes valid pixels that exceed the climatological background
threshold as an “event.” The processing algorithm links events
in a single image together into a mass-weighted centroid in
space and labeled as a “group.” Then, the algorithm connects
the groups to a mass weighted centroid in time and space and
labeled as a “flash” (Goodman et al. 2013). The Level 2 GLM
product supplies the data for the events, groups, and flashes.
In this work, we use the latitude and longitude values for the
flash data. The Level 2 GLM product flash data has parallax-
induced geolocation error (Virts and Koshak 2020) that we do
not correct since the displacement error is small with respect
to the areal coverage used in our application.

O P S NO T E S 1211JULY 2023

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/02/23 02:48 PM UTC



Here, we useGOES-16GLM flashes from 2018 to 2021 in the
North Atlantic. While preliminary, nonoperational GOES-16
GLM data from 2017 do exist, we restrict data to after the
checkout period for the instrument once the GOES-16 satel-
lite reached its operational orbit position at 75.28W. And be-
cause the GOES-17 GLM did not become operational until
after the 2018 hurricane season ended and the GOES-16
GLM domain extends into the western part of the eastern
North Pacific, we only use GOES-16 to assess the impact of
lightning observations even though we run the model using
both GLM instruments. We note that changes to GLM
processing to flag and correct erroneous GLM output are
ongoing [i.e., the so-called “Bermuda bars” documented by

Rudlosky et al. (2019)]. To date, the GLM data are not be-
ing reprocessed with a consistent version of the algorithm to
produce a homogeneous Level 2 product. We will highlight
an example of erroneous GLM output and discuss the im-
pact on applications for tropical cyclones in section 6.

3. Tropical cyclone lightning density

Tropical cyclones exhibit a bimodal distribution of lightning
in radius. The peaks occur near the eyewall and in the outer
rainband area (e.g., Molinari et al. 1999; Cecil et al. 2002;
Abarca et al. 2011; Stevenson et al. 2016). To exploit this,
DeMaria et al. (2012) define two areas for calculating

TABLE 1. The top third of the table provides a list of storm characteristics from the Automated Tropical Cyclone Forecast system
best track database (Sampson and Schrader 2000), the units for the characteristics, and a description. The middle and bottom thirds
of the table list large-scale storm environment and convective parameters taken from the developmental and operational SHIPS
datasets (e.g., DeMaria and Kaplan 1994; RAMMB 2021).

Quantity Abbreviation Units Description

Storm characteristics
Latitude LAT 8 The latitude of the center of the tropical cyclone
Longitude LON 8 The longitude of the center of the tropical cyclone
Intensity Vmax kt The 1-min maximum wind speed
Persistence PER kt Intensity change in the preceding 12-h period

Environment parameters
Potential intensification POT kt Remainder of the empirical potential intensity calculated from

the sea surface temperature and intensity
Vertical wind shear SHDS kt Vertical wind shear magnitude calculated within a radius of

500 km where S is “C” for an 850–200-hPa deep layer or “G”

for generalized column shear
Relative humidity RHLL % Relative humidity averaged within a 200–800-km annulus

around the storm center; LL is the level with “LO” for
850–700 hPa and “MD” for 700–500 hPa

200-hPa divergence DDDD s21 3 107 200-hPa divergence from 0 to 1000 km; DDD represents center
with “200” for the surface center and “IVC” for the 850-hPa
vortex center

Tangential wind tendency ATWT m s22 Tendency of the model average symmetric tangential wind from
0 to 600 km

Temperature advection TADV K s21 3 106 Temperature advection between 850 and 700 hPa within a
radius of 500 km

Eddy momentum flux REFC m s21 day21 200-hPa average relative eddy momentum flux convergence in a
100–600-km annulus

Ocean heat content OHC kJ cm22 Ocean heat content relative to the 268C isotherm derived from
the Navy Coupled Ocean Data Assimilation system analyses

Convective parameters
GOES IR PCTB % Percent area of GOES brightness temperatures , TB within a

50–200-km annulus, where TB is either 2308, 2508, or 2608C
(denoted as “30,” “50,” “60”)

GOES IR standard deviation TBSD % Standard deviation of GOES brightness temperature within a
radius of 200 km

GOES IR minimum radius RMNT km Radius of minimum GOES brightness temperature between
0 and 150 km

Size metric fR5 % GOES IR fractional deviation from the climatological infrared
tropical cyclone size metric

Inner-core lightning LHHI km22 yr21 Inner-core region lightning density between 0 and 100 km in
scaled radius using fR5; HH denotes the 0–1-h (“01”), 0–6-h
(“06”), and 6–12-h (“12”) period

Rainband lightning LHHR km22 yr21 Rainband region lightning density between 200 and 300 km in
scaled radius using fR5; HH denotes the 0–6-h (“06”) period
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lightning predictors: inner core and rainband. They set the
inner-core area from 0 to 100 km and the rainband area
from 200 to 300 km with a gap between the two areas repre-
senting the climatological minimum in tropical cyclone
lightning [for an updated radial climatology, see Fig. 7 in
Stevenson et al. (2016)]. Through later experimentation,
DeMaria et al. (2012) find that the variance explained increases
by selecting different ranges for each Northern Hemisphere
tropical cyclone basin. These ad hoc adjustments to the bound-
ing radii relate to the typical storm size characteristic of each
basin (Chavas and Emanuel 2010; Knaff et al. 2014b). In gen-
eral, the eastern North Pacific basin has smaller storms than
other basins on average, the western North Pacific basin has the
largest storms, and the North Atlantic basin is more variable re-
gardless of the size metric (e.g., Knaff et al. 2007, 2014b).

Here, we calculate an axisymmetric, average lightning den-
sity for the two areas described in DeMaria et al. (2012) and
defined as

LD 5

ty∑
N

n
fn; rj#rn,rj11

th
1
2 (r2j11 2 r2j )

, (1)

where n is a single flash, N is the total number of flashes, ty is
the number of hours in a year (i.e., 8766 h), th is the period
(in this work, 1 or 6 h), rj and rj11 are the radial bin bounds,
and frj#r,rj11

are the flashes within the bin. Note that (1) has
units of flashes per square kilometer per year. Before radially
binning the lightning flashes, we calculate a scaled radius r by
dividing the physical radius of the flash from the storm center, r,
by the fractional radius of 5-kt wind (fR5). Knaff et al. (2017)
define fR5 as the storm size relative to climatology using the geo-
stationary satellite longwave infrared imagery}fR5 is available

in real time in the SHIPS diagnostic files. Figure 2 shows how
our scaling impacts what lightning observations we use in calcu-
lating the lightning density for Hurricane Dorian at 0600 UTC
1 September 2019, a smaller than average storm with an fR5 of
75% of normal and intense inner-core lightning activity, and
Hurricane Laura at 1800 UTC 26 August 2020, a larger than
average storm with and fR5 of 122% of normal and minimal in-
ner-core lightning activity. While the differences in physical and
scaled radius are minor as the figure shows, we find that this scal-
ing creates a clearer distinction between inner-core and rainband
lightning by reducing the variance of lightning density values near
150 km in scaled radius space (e.g., Knaff et al. 2014a).

For tropical cyclone centric lightning observations, the fre-
quency distribution of lightning density in (1) is skewed with values
shifted toward zero}characteristic of a lognormal distribution.
Since the operational machine learning technique assumes that
predictors are normally distributed, we want to normalize the
quantity. DeMaria et al. (2012) take the square root of the light-
ning density. While their approach reduces extreme values and
shifts the distribution toward normal, this step does not sufficiently
normalize the data. From (1), we transform the data with the natu-
ral logarithm of one plus the square root of lightning density:

L 5 ln(1 1 LD1/2): (2)

In section 6, we will evaluate how the transformed lightning
density values compare between WWLLN and GLM as well
as show the impact of the transform defined in (2).

4. Lightning-based rapid intensification guidance

To assess the contribution of the lightning predictors, we le-
verage two different operational rapid intensification guidance
frameworks. With the two frameworks, we create control runs
with no lightning and experimental runs with two lightning-
based convective predictor configurations. Because these two
rapid intensification guidance frameworks exhibit a degree of
independence, we calculate an equally weighted average or
consensus between the two frameworks to understand if the
change in skill contributed by the lightning-based predictors is
relevant regardless of the framework. Also, note that we only
show results in the context of the consensus based on a simple
average to create a framework-agnostic approach as a means to
isolate the influence of the lightning predictors.

a. Guidance framework setup

For the first framework, we construct a basin-specific base-
line model used operationally that is similar to the DeMaria
et al. (2012) SHIPS-RII setup. The SHIPS-RII calculates pre-
dictor coefficients with a linear discriminant analysis (Kaplan
and DeMaria 2003). In the operational SHIPS-RII model, the
large-scale diagnostic predictors include 0–500-km deep-layer
vertical wind shear (SHDC), 200–800-km lower-tropospheric
relative humidity (RHLO), 0–1000-km 200-hPa divergence
(D200), and the tendency of the model average symmetric
tangential wind from 0 to 600 km (ATWT). For ocean param-
eters, the model uses ocean-heat content (OHC) and sea sur-
face temperature coupled with Vmax to calculate potential

FIG. 1. Adjustment factors using the methods from Stevenson
et al. (2018) applied to the WWLLN dataset from 2005 to 2020 for
the eastern (red curve) and western (yellow curve) North Pacific
and North Atlantic (blue curve) ocean basins.
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intensification (POT). For convective parameters, the model
uses a percent area with brightness temperature less than
2308C (PC30) and the standard deviation of the brightness
temperature within 200 km of the storm (TBSD). From the
working best track database files, the model uses the maxi-
mum sustained wind (Vmax), the square of Vmax, and 12-h in-
tensity change (e.g., persistence; PER).

For the second framework, we mimic the linear discriminant
analysis component of the Rapid Intensification Prediction

Aid (RIPA) model (Knaff et al. 2018, 2020)}RIPA also has a
logistic regression component that we do not use here. With
being developed for the Joint Typhoon Warning Center’s area
of responsibility (i.e., western North Pacific, Indian Ocean,
Southern Hemisphere), RIPA has a separate set of model
predictors from the SHIPS-RII, which has an eastern North
Pacific and North Atlantic operational focus. But this configu-
ration is skillful in the eastern North Pacific and North Atlantic
(Franklin 2021). For model predictors, RIPA uses the 0–500-km
generalized vertical wind shear (SHDG; Knaff et al. 2005),
200–800-km middle-tropospheric relative humidity (RHMD),
0–1000-km 200-hPa divergence using the 850-hPa vortex loca-
tion (DIVC), average relative eddy momentum flux conver-
gence in a 100–600-km annulus (REFC), and temperature
advection between 850 and 700 hPa from 0 to 500 km
(TADV). For ocean predictors, RIPA also uses OHC and sea
surface temperature for the POT calculation. For the infrared-
based convective parameters, RIPA also uses TBSD. But
RIPA uses the percent area with brightness temperature less
than 2508 and 2608C (PC50 and PC60, respectively), radius
of minimum brightness temperature between 0 and 150 km
(RMNT), and the fractional deviation from the climatological
infrared tropical cyclone size metric (fR5). RIPA uses Vmax

and PER from the best track data. Unlike prior rapid intensifi-
cation guidance aids, RIPA includes caps on Vmax and PER.
By using the caps, RIPA has more independence between
these predictors (Knaff et al. 2020).

For the lightning predictors, we define the inner-core
0–100-km scaled-radius area and rainband 200–300-km scaled-
radius area lightning density predictors. For the first configura-
tion (the spatial configuration), we mimic DeMaria et al.
(2012) but take the natural logarithm of one plus the square
root of the lightning density, defined by (2), for the two areas
for the 0–6-h period. For the second configuration (the tempo-
ral configuration), we calculate the normalized lightning den-
sity with (2) from 0 to 1 h, from 0 to 6 h, and from 6 to
12 h for the inner-core area only.

We list the parameters for both configurations in the bot-
tom third of Table 1. And in being consistent with other rapid
intensification guidance (DeMaria and Kaplan 1994; DeMaria
et al. 2012, 2014; Kaplan and DeMaria 2003; Kaplan et al.
2015; Knaff et al. 2018, 2020), we note that the vertical wind
shear, relative humidity, 200-hPa divergence, average sym-
metric tangential wind tendency, temperature advection, and
eddy momentum flux convergence are the average value over
the forecast period (i.e., from t 5 0 to t 5 12, 24, 36, 48, 72 h)
while the current intensity is at the analysis time t 5 0 h and
potential intensification and ocean heat content follow the
forecast track on fixed ocean state fields.

Consensus techniques for tropical cyclone forecasting are com-
mon and improve tropical cyclone guidance skill (Goerss et al.
2004; Sampson et al. 2008). For the consensus, we equally weigh
the SHIPS-RII and RIPA probabilities for the no-lightning pre-
dictor control and the two lightning predictor configurations (i.e.,
spatial and temporal). If the consensus with the lightning infor-
mation is different from our skillful baselines, then we can argue
that lightning-based predictors adds skill for the operational
model.

FIG. 2. The 10.3-mm longwave infrared imagery from GOES-16
overlaid with lightning strokes from WWLLN (yellow points) and
effective area for calculating of the lightning density from 100 km
in physical space (blue curve) and scaled space (red curve) for
(a) Hurricane Dorian at 0600 UTC 1 Sep 2019 with an fR5 of 75%
of normal and (b) Hurricane Laura at 1800 UTC 26 Aug 2020 with
an fR5 of 122% of normal.
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b. Guidance training

For the linear discriminant analysis, we use the SHIPS De-
velopmental Dataset from 2005 to 2017 and train the SHIPS-
RII and RIPA framework with the basins independently.
Note that for RIPA, Knaff et al. (2018, 2020) train the opera-
tional RIPA model with the western North Pacific, Indian
Ocean, and Southern Hemisphere basins. While the rapid in-
tensification threshold is 30 kt in 24 h in the North Atlantic
Ocean, operational rapid intensification aids predict multiple
rapid intensification thresholds (Table 2). Each rapid intensi-
fication threshold has an independent set of coefficients cal-
culated from the linear discriminant analysis. For linear
discriminant analysis, each input feature (i.e., predictor)
should have a Gaussian distribution and should exhibit
some degree of independence from other candidate fea-
tures. While not shown here, the variables in RIPA are
more independent than those used with SHIPS-RII, which
lends to the independence between the two linear discrimi-
nant analysis models and why we choose to assess the value
of lightning-based predictors using these two guidance
frameworks.

Table 2 shows the mean 0–6-h inner-core lightning density
between the rapid intensification and no rapid intensification
groups. Table 3 shows the lightning predictor coefficient val-
ues for the linear discriminant analysis for the 30 kt in 24 h

threshold for the SHIPS-RII and RIPA configurations for the
eastern and central North Pacific and North Atlantic basins
(all model predictor coefficient values are in Table S1 in the
online supplemental material). For the spatial lightning pre-
dictors for the 30 kt in 24 h threshold, we see that the coeffi-
cient is negative for the inner-core area (L06I) for the North
Atlantic and eastern and central North Pacific. Negative light-
ning predictor coefficients indicate that lightning activity is de-
creased for rapid intensification events in comparison to
nonrapid intensification events. The sign of the coefficients is
consistent with DeMaria et al. (2012). However, in DeMaria
et al. (2012), the rainband areas (L06R) had a positive and
neutral contribution, respectively. But, here, we see that the
rainband area lightning density contribution for the North
Atlantic is neutral to slightly negative. For the temporal con-
figuration outlined here, the inner core predictors for 0–1 h
(L01I), 0–6 h (L06I), and 6–12 h (L12I) are negative for the
North Atlantic and eastern and central North Pacific. The ba-
sins differ on the importance of the 6–12-h predictor (L12I)
with the eastern and central North Pacific showing a larger,
negative contribution.

c. Guidance independence

In all rapid intensification guidance, environmental and
storm metadata metrics such as intensity, persistence, potential
intensification, sea surface temperature or ocean heat content,

TABLE 2. The rapid intensification guidance thresholds with the change in intensity DVmax over a period Dt (first column).
The frequency of the threshold occurring (i.e., sample base rate) in the North Atlantic and eastern and central North Pacific for the
2005–17 training sample and 2018–21 testing sample in parentheses (second column). The preceding 0–6-h mean inner-core lightning
density (L06I) rapid intensification (RI) threshold and non-RI cases for the North Atlantic and eastern and central North Pacific in
parentheses (third column). The threshold probability or trigger used to assume “yes” rapid intensification for validating the linear
discriminant analysis models (last column).

Threshold

Frequency (%)

Lightning density (km22 yr21)

Trigger (%)DVmax (kt) Dt (h) RI No RI

20 12 6.2 (7.2) 3.2 (0.6) 1.8 (0.5) 20.0
25 24 12.8 (13.6) 2.2 (0.4) 1.7 (0.5) 20.0
30 24 8.8 (9.3) 2.3 (0.4) 1.7 (0.5) 22.5
35 24 5.7 (6.3) 2.5 (0.5) 1.7 (0.5) 22.5
40 24 3.8 (4.0) 3.7 (0.4) 1.7 (0.5) 17.5
45 36 6.7 (7.0) 2.0 (0.3) 1.6 (0.5) 17.5
55 48 6.6 (6.0) 1.5 (0.2) 1.5 (0.5) 12.5
65 72 6.9 (5.9) 0.8 (0.2) 1.5 (0.5) 15.0

TABLE 3. The linear discriminant analysis standardized coefficients for the lightning density predictors (i.e., L01I, L06I, L12I,
L06R; see Table 1 for descriptions) for the 30 kt in 24 h rapid intensification threshold (for the coefficients for all predictors, see
Table S1). The table is split in two for the North Atlantic and eastern and central North Pacific. Within the basins, the two
configurations for spatial and temporal are given. Within each lightning predictor configuration, the values for the SHIPS and RIPA
frameworks are provided.

Predictor

North Atlantic Eastern and central North Pacific

Spatial Temporal Spatial Temporal

SHIPS RIPA SHIPS RIPA SHIPS RIPA SHIPS RIPA

L01I } } 20.115 20.249 } } 20.162 20.204
L06I 20.140 20.284 20.022 20.073 20.316 20.498 20.052 20.068
L12I } } 20.094 20.079 } } 20.370 20.385
L06R 20.096 20.074 } } 0.059 0.125 } }
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convective predictors, and vertical wind shear dominate as the
most important predictors (see Table S1; Kaplan and DeMaria
2003; Kaplan et al. 2015; Knaff et al. 2018, 2020). As a conse-
quence, other predictors assist at the margin of the probability
threshold. To assess the differences in model probabilistic out-
put, we use the 2005–17 test dataset seasons to evaluate the
model independence by calculating a Spearman’s rank correla-
tion rs and conducting paired Student’s t test with an a 5 0.05.
As expected, the model output probabilities between the no
lightning and the two consensus lightning configurations are
all correlated with rs values between 0.83 and 0.98 across the
eight rapid intensification thresholds. But, from the Student’s
t test, the p values between no lightning and the two consensus
lightning configurations range from 7.3 3 2025 to 3.5 3 10237

allowing us to reject the null hypothesis that models with light-
ning predictors do not produce a different probabilistic fore-
cast output. This suggests that the addition of the lightning
predictors are indeed shifting the output probability distribu-
tion. Figure 3 shows the p values from the paired Student’s
t test between the temporal and spatial consensus configura-
tions. We can reject the null hypothesis that there is no differ-
ence in the probabilistic model output for the 20 kt in 12 h,
35 and 40 kt in 24 h, and 65 kt in 72 h. However, for the more
common rapid intensification thresholds of 25 and 30 kt in 24 h,
45 kt in 36 h, and 55 kt in 48 h, we cannot reject the null hypoth-
esis. The 30 kt in 24 h appears to be consistent with the linear
discriminant analysis coefficients for the rainband region light-
ning in our spatial configuration are relatively small (Table 3)
meaning that the inner-core lightning is dominating. While
these four rapid intensification threshold output probabilities
are not significantly different, this finding may also point to
lightning activity being influenced by proximity to land. The im-
plications of a physical difference in lightning related to land
are discussed in section 5b.

5. Lightning predictor evaluation

To assess the value added by the lightning density predic-
tors, we evaluate the consensus forecast created from the
SHIPS-RII and RIPA models with the North Atlantic and
eastern North Pacific operational large-scale diagnostic files
for 2018–21. We limit our evaluation to individual analysis
times when the tropical system has an initial intensity greater
than 34 kt and does not make landfall during the rapid intensi-
fication forecast period. For the evaluation metrics, we use hit
rate (i.e., probability of detection) defined as H 5 a/(a 1 c)
where a, b, c, and d are values in a contingency table that stand
for true positive, false positive, false negative, and true nega-
tive, respectively, and success ratio (i.e., one minus the false
alarm ratio) defined as

SR 5
a

a 1 b
, (3)

which provides the fraction of the predicted rapid intensifica-
tion events that verify [for a more thorough discussion of sca-
lar contingency table and the metric formulation, see Wilks
(2019)].

With any metric computed from the contingency table, we
can create a skill score. Skill scores compare model perfor-
mance to a reference defined as

S 5
S 2 SRef

SPerf 2 SRef
, (4)

where S is the value of the skill metric for the candidate
model, SRef is the reference model score, and SPerf is a perfect
score in the metric that is either zero or one. The reference in
meteorological applications is often climatology, persistence,
or other skillful, baseline model. However, climatology is ill-
defined for rapid intensification. Often, developers use fre-
quency across all forecast periods as the reference state (e.g.,
Kaplan et al. 2015). However, this approach neglects the re-
gional and environmental variability that plays vital roles in
intensification, so the frequency produces an erroneous skill
representation (Hamill and Juras 2006). In this context, per-
sistence would also not resolve rapid intensification. Instead
of comparing skill to climatology and persistence, we use the
no-lightning version and the operational rapid intensification
consensus (RIOC) as our reference or baseline models.

For the rapid intensification, the operational guidance de-
velopers customarily define a threshold or trigger probability
value for which a forecast exceeding this value is “yes” rapid
intensification [for information on converting probabilistic
forecasts to non-probabilistic forecasts, see the discussion in
Wilks (2019)]. To create a skillful baseline, we define the
threshold probability using the no-lightning consensus
model on the training dataset to optimize the Heidke skill
score and frequency bias ratio. The Heidke skill score
(HSS) is defined as

FIG. 3. A bar chart of the p values from a paired Student’s t test for
each of the rapid intensification thresholds. The gray horizontal line
denotesa5 0.05, which is used in assessing statistical significance.
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HSS 5
2(ad 2 bc)

(a 1 c)(c 1 d) 1 (a 1 b)(b 1 d) , (5)

where HSS 5 1 is a perfect score and where the skill score at-
tempts to quantify the accuracy relative to random chance. For
rare events, the Heidke skill score approaches 2a/(2a 1 b 1 c)
(referred to as the F1 score; see the appendix for more detail).
The frequency bias ratio B is defined as

B 5
a 1 b
a 1 c

, (6)

where B5 1 is an unbiased forecast model, B, 1 is underfor-
ecasts, and B. 1 is overforecasts. Since individual predictions
can skew skill metrics, we perform a bootstrap resample with
100 000 permutations over the 2005–17 WWLLN training da-
taset. From the bootstrap resampling of the 2005–17 training
dataset in Fig. 4, the HSS for all thresholds levels off between
threshold probability values of 15% and 40%. Within that
range, we then select a threshold probability to the nearest
2.5% where the frequency bias ratio B is greater than one and
HSS is maximized. For the 24-h thresholds, we choose 20%,
22.5%, 22.5%, and 17.5% for 25, 30, 35, and 40 kt, respec-
tively. And we select 20%, 17.5%, 12.5%, and 15% for the
12-, 36-, 48-, and 72-h thresholds (also, see values in Table 2).
Based on the selected threshold probabilities, Fig. 5 shows
that the spatial and temporal lightning configurations gener-
ally increase the success ratio SR and decrease the hit
rate H while maintaining a relatively constant threat score,
TS 5 a/(a 1 b 1 c), for the 2005–17 training dataset. For the
20 kt in 12 h threshold (shades of blue in Fig. 5b), neither
the spatial nor temporal configurations show changes to the
skill over the no-lightning baseline consensus. For the
25 kt in 24 h thresholds (shades of blue in Fig. 5a), the spa-
tial and temporal configurations have a similar threat score
to and a frequency bias ratio closer to one than the no-
lightning baseline. The 30 kt in 24 h has no discernible
difference. For the 35 and 40 kt in 24 h, the spatial configu-
ration appears to degrade the skill but is within the bounds
provided by the standard deviation. For the 45 kt in 36 h
threshold (shades of green in Fig. 5b), the lightning predic-
tor configurations lend to underforecasting. With rare
thresholds like at longer lead times, the standard deviation
tends to increase highlighting the sensitivity to the small
training sample.

a. Testing dataset assessment

For the 2018–21 eastern and central North Pacific and
North Atlantic hurricane seasons, we test the rapid intensifi-
cation guidance run on the operational large-scale diagnostic
files. Unlike the SHIPS Development Dataset used for the
2005–17 training dataset, these operational large-scale diag-
nostic files contain errors associated with the operational esti-
mates of storm position and current intensity as well as errors
in the forecast fields. Given these sources of additional error,
we repeat our bootstrap resampling approach to reflect
some of this inherent uncertainty and used these values in

calculating the hit rate and success ratio shown in Fig. 6 for
the 2018–21 testing dataset. For the 20 kt in 12 h threshold,
the spatial and temporal configuration do not improve the hit
rate nor success ratio over the no-lightning baseline consensus
or RIOC. For the 24-h thresholds, the spatial configuration
shows mixed performance over the no-lightning baseline. But
the temporal configuration shows improvement over the no-
lightning and RIOC. For the 35 and 40 kt, the improvement
across metrics is ;10%–25% relative to the no-lightning
model and ;5%–10% relative to RIOC. For the 45 kt in 36 h
threshold, the temporal lightning predictor configuration
greatly outperforms the no-lightning configuration RIOC
baselines. However, the spatial configuration for the 45 kt in
36 h threshold appears slightly better. Convective predictors
such as lightning density appear to influence intensity fore-
casts in the short-term and generally do not aid in improving
the 72-h lead times when compared to the no-lightning

FIG. 4. The B (dashed curves) and HSS (solid curves) values for
(a) the 24-h rapid intensification thresholds (i.e., 25, 30, 35, 40 kt in
24 h) and (b) the 12-, 36-, 48-, and 72-h rapid intensification thresh-
olds where the mean (thick curves) and standard deviation (thin
curves) are calculated from 0% to 50% at 2.5% increments calcu-
lated from a bootstrap resample with 100 000 permutations. The ar-
rows denote the frequency at which rapid intensification threshold
occurs in the 2005–17 training dataset (also listed in Table 2).
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baseline. Also, given that long-lead thresholds are rare, the
no-lightning consensus also shows a degradation compared to
RIOC, which points to our 13-yr training dataset being insuffi-
cient at discriminating between the rapid intensification
events. Despite this, the verification of the 2018–21 seasons in
the testing dataset shows that adding lightning observations in
the form of the temporal configuration increases skill in the
24–36-h lead times with respect to RIOC.

b. Distance to land

To address whether lightning predictors add value to rapid
intensification forecasts, we must attempt to untangle the dis-
crepancy between the spatial and temporal predictor configu-
rations. As previously noted, DeMaria et al. (2012) show a
perplexing relationship between rapid intensification and
rainband lightning in the North Atlantic. And the authors in-
dicate that this rainband area relationship does not exist in
the eastern North Pacific}in fact, the rainband area has no
correlation to intensification there. Considering that our
longer training dataset yielded a different relationship, we
believe that the rainband area predictor is contaminated by
convection over land, impacted by unstable land-originating
air masses (MacGorman and Rust 1998), and influenced by
aerosols (Stolz et al. 2015), and that this is a plausible expla-
nation for why the rainband area had a positive contribution
in the DeMaria et al. (2012) and a neutral to slightly nega-
tive contribution here. In the North Atlantic, tropical cyclo-
nes tend to rapidly intensify in portions of the basin close to
land (Kaplan and DeMaria 2003) causing the rainband area
predictor to capture noncausal spikes in lightning activity.
While the detection efficiency of land-based lightning detec-
tion networks is a function of land, we use the SHIPS
distance-to-land database, which includes continents and
major, storm-influencing islands to understand the possible
relationship between land and our lightning predictors. We
plot the 2005–21 North Atlantic and eastern and central
North Pacific 30 kt in 24-h rapid intensification threshold
events with respect to distance to land in Figs. 7a and 7d.
From Figs. 7b, 7c, 7e, and 7f, lightning density increases as
storms approach land with the rainband area showing a
clearer relationship likely due to rainbands being over land
in regions like the Caribbean, Gulf of Mexico, or Pacific
coast of Mexico. With this relationship to land, we believe
that any correlation between rapid intensification and light-
ning in the rainband area is not causal but is endemic to the
location and frequency of which rapid intensification occurs
in the basin in the training sample.

Returning to Fig. 6, the spatial and temporal lightning con-
figurations have similar performance for the 30 kt in 24 h
rapid intensification threshold. From the Heidke skill score,
the accuracy difference is ;0.5% (0.4184 and 0.4229, respec-
tively). To understand the impact of land on the spatial and tem-
poral lightning configurations, we separate the forecasts into two
groups: tropical cyclone center positions with a distance from
land that is 1) $800 km (1817 forecasts) and 2) #600 km (443
forecasts). For the $800 km from land, the difference is less
than ;0.9% (0.3682 and 0.3591, respectively) in Heidke skill
score between the spatial and temporal configuration, which is
consistent for our all storms metrics. When storms are within
600 km of land, the spatial configuration is ;4.5% worse than
the temporal (0.5265 and 0.5716, respectively).

From evaluating the relationship between lightning density
and distance to land, we opt for the temporal configuration in
our operational implementation of the rapid intensification
guidance. By doing so, we largely avoid the spurious correlation
between rainband lightning density and rapid intensification

FIG. 5. A categorical performance diagram for the 2005–17
training dataset seasons with the SR on the abscissa, the hit
rate H on the ordinate, frequency bias ratio B in the light gray
lines, and threat score in the dark gray curves (Roebber 2009).
The circles are the mean and error bars are the standard devi-
ation for a fixed threshold probability value per rapid intensity
threshold (see Table 2) calculated from a bootstrap resample
with 100 000 permutations. The (a) 24-h and (b) 12-, 36-, 48-,
and 72-h rapid intensification thresholds SR and H values are
shown for the no-lightning (light, closed circle), spatial (dark,
open circle), and temporal (dark, closed circle).
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noted in DeMaria et al. (2012) for the North Atlantic. And we
believe that this comparison assists in explaining the discrep-
ancy between the North Atlantic and eastern North Pacific
rainband lightning density coefficients (DeMaria et al. 2012).
The influence of land is reduced for the inner-core lightning
predictors. Considering that we already add seasonal climatol-
ogy adjustments and regress GLM onto the WWLLN observa-
tions as will be highlighted in the next section, we do not want
to add another adjustment for land and the inner-core light-
ning. A longer record from GLM might allow for a land-based
adjustment.

6. Using GLM in operations

In DeMaria et al. (2012), the authors aspire to use GLM
lightning data in the operational SHIPS-RII. The benefit of

using GLM lightning data is that they are available in real time
for operations. However, with rapid intensification being infre-
quent, developers need to train the model with a sufficiently large
training dataset to ensure a robust stable statistical–dynamical
model}a problem for GLM data. As noted earlier, the goal
of this work is to understand if we can create a longer, larger
training dataset to allow us to still use GLM in an opera-
tional setting. Figure 8 shows that for a single storm (Hurri-
cane Florence 2018) the two lightning data sources appear
similar. However, an outlier at 0000 UTC 11 September is
apparent. Initially, it appears that GLM captured a spike
in lightning activity as intensification ended. However, at
this time, Hurricane Florence passed through the imager-
induced erroneous region of false lightning detection that
appears in the GLM L2 product events, groups, and flashes
referred to as the “Bahama bar” (Rudlosky et al. 2019).

FIG. 6. For each of the rapid intensification thresholds along the ordinate, (a) the 2018–21 sample base rate (i.e., percent of forecast peri-
ods) for the North Atlantic and eastern and central North Pacific that reach the threshold along abscissa with the number of cases labeled
by the circle. (b)–(d) The hit rate (blue) and success ratio (SR; orange) are shown for the spatial (dark, open circle) and temporal (dark,
closed circle) lightning predictor consensus and consensus without lightning (No LTNG; light, closed circle) for the scalar metric values in
(b), the skill change (or skill) relative to the consensus without lightning (No LTNG) in (c), and the skill change (or skill) relative to the
rapid intensification operational consensus (RIOC) in (d). The horizontal bars in (b) represent the standard deviation from a bootstrap re-
sample with 100 000 permutations. Note that we do not show some large negative values in (c) and (d) for longer lead times.
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While outliers caused by the Bahama bar and reverse
Bahama bar (data devoid) regions exist, we can substitute
the WWLLN-based predictors with the GLM-based predic-
tors assuming that the WWLLN strokes and GLM flashes
correlated and can be biased corrected. We bin, plot, and
correlate lightning density values for GLM and WWLLN
(Fig. 9). From the figure, the impact of using the natural loga-
rithm of the square root of the lightning density plus one follow-
ing (2) more realistically captures the lightning data and
improves the representation of the high end of the lightning
density distribution. To understand the relationship between
WWLLN and GLM-based inner-core predictors, we calculate
the Spearman’s rank correlation coefficient rs between GLM
and WWLLN 6-hourly inner-core lightning density. The rs val-
ues for a tropical cyclone with maximum sustained winds ex-
ceeding 95 kt (i.e., major hurricane), exceeding 64 kt (i.e.,
hurricane-force wind), between 34 kt (tropical storm force) and
64 kt, and less than 34 kt are 0.91 (188 cases), 0.90 (506), 0.93
(1612), and 0.94 (518), respectively. Given that the correlation
between the WWLLN stroke-based and GLM flash-based light-
ning density values is statistically significant across storm inten-
sities, we opt for a simple piecewise linear regression. For the
0–100-km inner-core area bin, the piecewise linear regression
between the GLM and WWLLN L values calculated with (2)
has a slopem of 1.26 and intercept b of 0.20 for systems weaker

than 64 kt and m 5 1.17 and b 5 0.09 for systems stronger
than 64 kt. Using these linear regressions, we run the light-
ning-based models trained with the 2005–17 WWLLN pre-
dictors with the corrected GLM predictors.

While the lightning densities are highly correlated, we want
to understand the practical impact. Figure 10 shows a case

FIG. 7. The 2005–21 North Atlantic and eastern and central North Pacific 30 kt in 24 h rapid intensification thresh-
old events with respect to distance to land for the (a) frequency binned by 200 km, (b) 0–6-h inner-core lightning den-
sity L, (c) 0–6-h rainband lightning density, and 28 3 28 binned (d) rapid intensification frequency, (e) mean inner-
core lightning density, and (f) mean rainband lightning density. Note that storms that pass over land or make landfall
in the 24 h from the initial time are removed.

FIG. 8. Hurricane Florence (2018) lightning density L from 2 to
19 Sep for the 0–6-h 0–100-km inner core for WWLLN (red curve)
and GLM (blue curve). The intensity (gray curve) is read using the
right-hand-side ordinate. Note that the spike in lightning density at
0000 UTC 11 Sep 2018 is from a Bahama bar.
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where 1) WWLLN misses activity observed by GLM in Hur-
ricane Florence on 0600 UTC 6 September 2018 (Fig. 10a)
and 2) GLM misses activity observed by WWLLN in Hurri-
cane Delta on 0000 UTC 6 October 2020 (Fig. 10b). We note
that these discrepancies between the instruments do not have
a source as clear as the Bahama bar. Errors may arise from
distance-to-land detection efficiency issues for WWLLN or
high cloud optical thickness for GLM (Rutledge et al. 2020).
Using the testing dataset for 2018–21, we calculate the proba-
bilities of rapid intensification thresholds for the temporal
lightning predictor configuration and GOES-16 GLM. Then,
we calculate the percentage of cases that would change from
rapidly intensifying (true and false positives) to nonrapidly
intensifying using the temporal lightning predictors. On aver-
age, we see four fewer forecasts of rapid intensification per
season per threshold based on the sample base rates for the
2018–21 seasons. For true positives, we see on average one
less correct forecast of rapid intensification per season per
threshold. The occurrence of these differences in true posi-
tives between using GLM data in the models trained using
WWLLN data is infrequent relative to the total number of
forecasts per season.

During the 2022 North Atlantic and eastern North Pacific
hurricane seasons, the temporal lightning density predictor con-
figuration of the SHIPS-RII and RIPA models ran as a real-
time experimental demonstration at the National Hurricane
Center. Using the preliminary, working best track data}the
operational assessment of tropical cyclone intensity that has not
gone through a postseason analysis, we assess the real-time per-
formance of the consensus output in comparison to RIOC.
Figure 11 shows the success ratio and hit rate for each thresh-
old. From Fig. 11a, the lightning-based guidance performed bet-
ter than RIOC for the 25, 30, and 35 kt in 24 h thresholds. But,
underperformed for the 40 kt in 24 h threshold. For the other
thresholds shown in Fig. 11b, the lightning guidance demonstrated

similar performance with 45 kt in 36 h and 55 kt in 48 h had better
threat scores but 20 kt in 12 h and 65 kt in 72 h had worse threat
scores. While some thresholds performed worse, this degradation
for these thresholds is not outside the characteristic behavior of
other rapid intensification guidance to raise concerns about per-
formance in future seasons if the lightning-based predictors transi-
tion into operations.

7. Discussion and conclusions

Here, we revisit and document using lightning data as a
predictor in the rapid intensification guidance motivated by
DeMaria et al. (2012). Now that GLM is in orbit, we want to
leverage the additional decade of WWLLN data to under-
stand the best predictors and to understand how we can use
the GLM instrument. We use ground-based lightning obser-
vations from 2005 to 2017 from WWLLN to develop predic-
tors. And we introduce new approaches for preprocessing the
data to consider storm size using fR5 and to normalize the
lightning density values. To isolate the impact of the lightning
predictors, we use two guidance frameworks, SHIPS-RII and
RIPA, to see if the lightning predictors add value in a consen-
sus. Next, we evaluate the model performance for the 2018
through 2021 seasons using the operational input. From our
approach, we show that taking advantage of how lightning
varies over the 12-h prior to rapid intensification yields im-
proved guidance in the short term (e.g., 12–48 h) when com-
pared to the no-lightning baseline and operational consensus
(RIOC). We also show that the original inner-core and rain-
band area predictors proposed by DeMaria et al. (2012) do
not exploit lightning data fully given performance relative to
the temporal predictors outlined here. Here, we also show that
the rainband area lightning degrades performance during the
2018–21 seasons. While lightning in the rainband area near
land appears to degrade performance in aggregate for rapid

FIG. 9. The joint distribution of the inner-core lightning density for 2018–21 in the North Atlantic and eastern North
Pacific for WWLLN on the abscissa and GOES-16 GLM on the ordinate. (a) The square root of the lightning density
calculated using (1) and (b) the values after calculating L, the natural logarithm of the square root of the lightning
density plus one using (2). The black line is the linear regression between GLM and WWLLN for all tropical cyclone
intensities.
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intensification guidance, rainband lightning may have utility
on a case-by-case basis and with respect to vertical wind shear
(Stevenson et al. 2016).

While we train the model using WWLLN since statistical–
dynamical rapid intensification guidance requires longer data
records than what is currently available solely from GLM, we
also discuss the impact of using GLM in place of WWLLN in
operations. In converting the WWLLN strokes and GLM
flashes into lightning density, we find that both datasets are

highly correlated. We show that discrepancies between running
the trained WWLLN-based models with either the WWLLN
or GLM data are trivial and should have a minor impact on
operational implementation of lightning-based guidance. Fur-
ther into the GLM mission, the community can explore other
approaches for blending the WWLLN and GLM datasets to
create a robust, long-term tropical cyclone centric lightning
dataset.

FIG. 10. Cases where lightning observations are missing in the
0–6-h fR5-scaled inner-core area (yellow circle) for (a) Hurricane
Florence at 0600 UTC 6 Sep 2018 for WWLLN (red “1” symbols)
compared with GLM (blue “3” symbols) and (b) Hurricane Delta
at 0000 UTC 6 Oct 2020 for GLM compared with WWLLN. The
lightning data are overlaid on GOES-16 10.3-mm longwave infra-
red imagery.

FIG. 11. A categorical performance diagram for the 2022 North
Atlantic and eastern North Pacific hurricane season using the pre-
liminary, working best track data with the SR on the abscissa, the
hit rate H on the ordinate, frequency bias ratio B in the light gray
lines, and threat score in the dark gray curves (Roebber 2009). The
circles are the mean and error bars are the standard deviation for a
fixed threshold probability value per rapid intensity threshold (see
Table 2) calculated from a bootstrap resample with 100 000 permu-
tations. The (a) 24-h and (b) 12-, 36-, 48-, and 72-h rapid intensifica-
tion thresholds SR andH values are shown for the RIOC (light cir-
cle) and temporal (dark circle).
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Throughout this work, we suggest that to fully understand
lightning with respect to intensity change, we need to continue
to understand changes in time at multiple time scales. From
GOES-R GLM imagery, storms clearly exhibit short-lived
bursts of lightning activity that are lost in the 1- and 6-h pre-
dictor quantities. However, this work does add to the discus-
sion of the role of lightning in tropical cyclone intensity trends
by supporting the previous finding presented in our introduc-
tion. But, obvious questions, whether the lightning density
metric extracts the most value from the lightning observations
and whether linear discriminate analysis can extract this value,
remain. And we believe that there is likely utility in other
GLM lightning metrics (e.g., lightning extent density and area)
and in using higher temporal variability information rather
than the preceding 0–1-, 0–6-, and 6–12-h symmetric light-
ning density quantities so that more abrupt changes to the
storm can be captured. Work of this type is also limited by
the rarity of rapid intensification events, and uncertainty
and frequency of intensity estimates in both operations and
best tracks. Each of these issues and questions can and
should be addressed in the future. That being said, GLM in-
formation, as used here, assisted in improving our ability to
anticipate rapid intensification events as shown by the eval-
uation of the 2022 North Atlantic and eastern North Pacific
hurricane season experimental demonstration, and these
methods represent an incremental improvement in our
abilities.

Finally, we want to reiterate that we believe that these
models developed here serve as a baseline for the community.
These baseline models can be extended as additional environ-
mental satellite agencies launch lightning mappers on geosta-
tionary satellite platforms. For example, the approach outlined
for the GOES-R series can be extended to lightning observa-
tions from the Japan Meteorological Agency Himawari-8/
Himawari-9 follow-on program by creating the appropriate
lightning density values and using the western Pacific Ocean ba-
sin seasonal correction adjustment factors, Fig. 1 (Bessho 2019).
In this work, we scaled using the fR5 metric. But physical and
machine learning models are improving our operational esti-
mates of the radius of maximum wind allowing tropical cyclone
warning centers to create postseason analyses of these metrics
(Knaff et al. 2021; Landsea 2022a,b; Chavas and Knaff 2022).
This information along with gridded lightning products (Duran
et al. 2021) may allow us to relate lightning to intensity change
based on our physical (Schubert and Hack 1982) and observa-
tional (Rogers et al. 2013, 2016) understanding. These baseline
models will allow the community to measure skill of future
work as the community learns to exploit the always-available
lightning data provided by the GLM instruments.
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APPENDIX

Heidke Skill Score, F1 Score Metric, and Rare Events

Skill assessment is a necessary element for developing,
testing, and evaluating models either for insight into a phe-
nomenon or transition to operations. However, selecting
the best or appropriate skill metric is unclear for rare events
like tropical cyclone rapid intensification. Not only does the
rarity present problems, but the labeled datasets contain uncer-
tainties in addition to small sample sizes and sample imbalan-
ces. Therefore, developing models to predict rare events takes
special care to avoid both large biases and overfitting while
producing a tool that results in useful guidance. The concept
of “usefulness” is somewhat subjective, but entails maximizing
the hit rate H, while minimizing the potential for false alarms.
And depending on the event of interest like rapid intensifica-
tion, forecasters or decision makers may accept a small de-
gree of forecast bias, particularly over forecasting. Here, we
examine two skill metrics, the Heidke skill score (HSS) and the
F1 score metric}widely used in classification problems}for
their behavior and strengths in assessing model skills associated
with rare events.

The Heidke skill score provides a measure of how well
a forecast does with respect to random chance. As men-
tioned in section 5, the Heidke skill score, (5), approaches
2a/(2a 1 b 1 c) for rare events. While not apparent in this
form, 2a/(2a 1 b 1 c) is the F1 score metric, a special case
of the Sørensen–Dice coefficient. Typically, the F1 score
metric is written as the harmonic mean between success
ratio SR (i.e., precision) and hit rate H (i.e., recall). To ex-
plore the relationship between the Heidke skill score and
F1 score metric, we use the Hogan and Mason (2011)
framework for comparing classification evaluation metrics
with respect to the base rate s, hit rate H, and false alarm
rate F (i.e., probability of false detection). Here, base rate,
s 5 (a 1 c)/n, is the sample event frequency or event cli-
matology, where n is the summation of a, b, c, and d. As a
reminder, hit rate H (i.e., probability of detection) is given
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by a/(a 1 c). The false alarm rate F is defined as b/(b 1 d).
Using s, H, and F, we can write a/n 5 sH, b/n 5 (1 2 s)F,
c/n 5 s(1 2 H), and d/n 5 (1 2 s)(1 2 F).

With these definitions, we can write the frequency bias
ratio [B; (6)] as

B 5
a 1 b
a 1 c

5
(1 2 s)

s
F 1 H, (A1)

the Heidke skill score [HSS; (5)] as

HSS 5
2(ad 2 bc)

(a 1 c)(c 1 d) 1 (a 1 b)(b 1 d)

5
2s(1 2 s)(H 2 F)

s 1 s(1 2 2s)H 1 (1 2 s)(1 2 2s)F , (A2)

and the success ratio [SR; (3)] as

SR 5
a

a 1 b

5
sH

(1 2 s)F 1 sH
? (A3)

As mentioned, we can write the F1 score metric as

F1 5
2a

2a 1 b 1 c

5 2
SR 3 H
SR 1 H

5
2sH

s(1 1 H)(1 2 s)F , (A4)

where the top line of the equation is in terms of a, b, c, d,
the middle line is the harmonic mean, and the bottom line
is in terms of s, H, F.

From (A1)–(A4), we can see that each metric is dependent
on the base rate s, which suggests that the scoring metrics will
have different meanings for balanced and imbalanced classifi-
cation problems. To assess the impact of s, we employ a skill–
bias diagram with HSS on the ordinate and frequency bias ra-
tio B on the abscissa. Figure A1 shows contours of F1 in the
skill–bias space for base rates, s 5 5%, 10%, 20%, 40%. Note
that the distorted quadrilateral-like shape can be interpreted
in terms of hit rate H and false alarm rate F, with H along
the upper-left and lower-right edges and F along the lower-
left and upper-right edges. As annotated in Fig. A1d, H in-
creases from 0 to 1 from the lower left to the upper right, and
F increases from 0 to 1 from the upper left to lower right. For
s 5 5% (Fig. A1a), we see that for both the HSS and F1

score become relatively independent of the frequency bias ra-
tio B. While Ebert and Milne (2022) see this as a shortcom-
ing, this can be a strength when used in conjunction with the
frequency bias ratio B if the application desires a specific ten-
dency to either over- or underforecast. As HSS approaches F1

for low values of s, the range of HSS decreases from 21 to 1
to ;0 to 1, where HSS # 0 represents a model with no fore-
cast skill. For the F1 score metric, we see that F1 can be artifi-
cially increased by overforecasting (i.e., B . 1) as the base
rate s increases from 5% to 40%. For example, when F1 5 0.5
for s 5 40%}a relatively balanced classification problem,
the meaning as defined by the Heidke skill score changes
from skillful to no skill as B approaches 2. As shown, the
HSS limits the potential of a model maximizing skill by dra-
matically overforecasting infrequent events, and appears
more appropriate as a metric for skill assessment for a wider
range of forecast applications.

FIG. A1. Skill–bias diagrams with the Heidke skill score [HSS; (A2)], on the ordinate and frequency bias ratio [B; (A1)] on the abscissa,
and contoured values of the F1 score metric (A4). The contours for the F1 score metric are for when the base rate s is (a) 5%, (b) 10%,
(c) 20%, and (d) 40%. Annotations in (d) show the relationship between the skill–bias diagram and the hit rate H and false alarm rate F.
Note that the abscissa is scaled for B. 1 so that the degree of over-/underforecasting is symmetric around B5 1.
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Rapid intensification is a rare event (i.e., low base rate s)
that would allow us to assume that HSS and F1 are equiva-
lent for most rapid intensification thresholds. However, we
opt to optimize our probability threshold value in section 5
with the HSS and B . 1 as shown in Fig. 4 since for some
rapid intensification thresholds, we have a local maximum
in our HSS values on either side of B 5 1. In doing so, we
avoid artificially increasing our chosen score metric through
overforecasting and selecting a probability threshold that
yields a higher frequency bias ratio B.

REFERENCES

Abarca, S. F., K. L. Corbosiero, and D. Vollaro, 2011: The World
Wide Lightning Location Network and convective activity in
tropical cyclones. Mon. Wea. Rev., 139, 175–191, https://doi.
org/10.1175/2010MWR3383.1.

Alexander, G. D., J. A. Weinman, V. M. Karyampudi, W. S.
Olson, and A. C. L. Lee, 1999: The effect of assimilating
rain rates derived from satellites and lightning on forecasts of
the 1993 superstorm. Mon. Wea. Rev., 127, 1433–1457, https://
doi.org/10.1175/1520-0493(1999)127,1433:TEOARR.2.0.CO;2.

Apodaca, K., M. Zupanski, M. DeMaria, J. A. Knaff, and L. D.
Grasso, 2014: Development of a hybrid variational-ensemble
data assimilation technique for observed lightning tested in a
mesoscale model. Nonlinear Processes Geophys., 21, 1027–
1041, https://doi.org/10.5194/npg-21-1027-2014.

Bessho, K., 2019: Status of Himawari-8/9 and their follow-on
satellites program. 2019 Joint Satellite Conf., Boston, MA,
Amer. Meteor. Soc., 8A.2A, https://ams.confex.com/ams/
JOINTSATMET/meetingapp.cgi/Paper/371501.

Black, R. A., and J. Hallett, 1999: Electrification of the hurricane.
J. Atmos. Sci., 56, 2004–2028, https://doi.org/10.1175/1520-
0469(1999)056,2004:EOTH.2.0.CO;2.

Bonfanti, C., L. Trailovic, J. Stewart, and M. Govett, 2018:
Machine learning: Defining worldwide cyclone labels for
training. Proc. IEEE 21st Int. Conf. on Information Fusion
(FUSION), Cambridge, United Kingdom, Institute of Elec-
trical and Electronics Engineers, 753–760, https://doi.org/10.
23919/ICIF.2018.8455276.

Cecil, D. J., 2001: LIS/OTD 0.5 degree high resolution full clima-
tology (HRFC) V2.3.2015. NASA, accessed 13 July 2015,
https://doi.org/10.5067/LIS/LIS-OTD/DATA302.

}}, E. J. Zipser, and S. W. Nesbitt, 2002: Reflectivity, ice scatter-
ing, and lightning characteristics of hurricane eyewalls and rain-
bands. Part I: Quantitative description. Mon. Wea. Rev.,
130, 769–784, https://doi.org/10.1175/1520-0493(2002)130,0769:
RISALC.2.0.CO;2.

Chavas, D. R., and K. A. Emanuel, 2010: A QuikSCAT climatol-
ogy of tropical cyclone size. Geophys. Res. Lett., 37, L18816,
https://doi.org/10.1029/2010GL044558.

}}, and J. A. Knaff, 2022: A simple model for predicting the
tropical cyclone radius of maximum wind from outer size.
Wea. Forecasting, 37, 563–579, https://doi.org/10.1175/WAF-
D-21-0103.1.

Combot, C., A. Mouche, J. Knaff, Y. Zhao, Y. Zhao, L. Vinour,
Y. Quilfen, and B. Chapron, 2020: Extensive high-resolution
Synthetic Aperture Radar (SAR) data analysis of tropical cy-
clones: Comparisons with SFMR flights and best track. Mon.
Wea. Rev., 148, 4545–4563, https://doi.org/10.1175/MWR-D-
20-0005.1.

DeMaria, M., and J. Kaplan, 1994: A Statistical Hurricane In-
tensity Prediction Scheme (SHIPS) for the Atlantic basin.
Wea. Forecasting, 9, 209–220, https://doi.org/10.1175/1520-
0434(1994)009,0209:ASHIPS.2.0.CO;2.

}}, R. T. DeMaria, J. A. Knaff, and D. Molenar, 2012: Tropical
cyclone lightning and rapid intensity change. Mon. Wea. Rev.,
140, 1828–1842, https://doi.org/10.1175/MWR-D-11-00236.1.

}}, C. R. Sampson, J. A. Knaff, and K. D. Musgrave, 2014: Is
tropical cyclone intensity guidance improving? Bull. Amer.
Meteor. Soc., 95, 387–398, https://doi.org/10.1175/BAMS-D-
12-00240.1.

}}, J. L. Franklin, M. J. Onderlinde, and J. Kaplan, 2021: Oper-
ational forecasting of tropical cyclone rapid intensification at
the National Hurricane Center. Atmosphere, 12, 683, https://
doi.org/10.3390/atmos12060683.

Duran, P., and Coauthors, 2021: The evolution of lightning flash
density, flash size, and flash energy during Hurricane Dorian’s
(2019) intensification and weakening. Geophys. Res. Lett., 48,
e2020GL092067, https://doi.org/10.1029/2020GL092067.

Ebert, P. A., and P. Milne, 2022: Methodological and conceptual
challenges in rare and severe event forecast verification. Nat.
Hazards Earth Syst. Sci., 22, 539–557, https://doi.org/10.5194/
nhess-22-539-2022.

Fierro, A. O., S. N. Stevenson, and R. M. Rabin, 2018: Evolution
of GLM-observed total lightning in Hurricane Maria (2017)
during the period of maximum intensity. Mon. Wea. Rev.,
146, 1641–1666, https://doi.org/10.1175/MWR-D-18-0066.1.

}}, Y. Wang, J. Gao, and E. R. Mansell, 2019: Variational as-
similation of radar data and GLM lightning-derived water va-
por for the short-term forecasts of high-impact convective
events. Mon. Wea. Rev., 147, 4045–4069, https://doi.org/10.
1175/MWR-D-18-0421.1.

Franklin, J. L., and M. Onderlinde, 2021: Verification of RI meas-
ures in 2021. HFIP Annual Meeting, NOAA, 21 pp., https://
hfip.org/sites/default/files/events/269/330-franklin-verification-
ripptx.pdf.

Gall, R., J. Franklin, F. Marks, E. N. Rappaport, and F. Toepfer,
2013: The Hurricane Forecast Improvement Project. Bull.
Amer. Meteor. Soc., 94, 329–343, https://doi.org/10.1175/BAMS-
D-12-00071.1.

Goerss, J. S., C. R. Sampson, and J. M. Gross, 2004: A history of
western North Pacific tropical cyclone track forecast skill.
Wea. Forecasting, 19, 633–638, https://doi.org/10.1175/1520-
0434(2004)019,0633:AHOWNP.2.0.CO;2.

Goodman, S. J., and Coauthors, 2013: The GOES-R Geostation-
ary Lightning Mapper (GLM). Atmos. Res., 125–126, 33–49,
https://doi.org/10.1016/j.atmosres.2013.01.006.

Hamill, T. M., and J. Juras, 2006: Measuring forecast skill: Is it
real skill or is it the varying climatology? Quart. J. Roy. Me-
teor. Soc., 132, 2905–2923, https://doi.org/10.1256/qj.06.25.

Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis.
Quart. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.
1002/qj.3803.

Hogan, R. J., and I. B. Mason, 2011: Deterministic forecasts of bi-
nary events. Forecast Verification: A Practitioner’s Guide in
Atmospheric Science, 2nd ed. I. T. Jolliffe and D. B. Stephen-
son, Eds., Wiley, 31–59.

Jiang, H., and E. M. Ramirez, 2013: Necessary conditions for trop-
ical cyclone rapid intensification as derived from 11 years of
TRMM data. J. Climate, 26, 6459–6470, https://doi.org/10.
1175/JCLI-D-12-00432.1.

Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics
of rapidly intensifying tropical cyclones in the North Atlantic

O P S NO T E S 1225JULY 2023

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/02/23 02:48 PM UTC

https://doi.org/10.1175/2010MWR3383.1
https://doi.org/10.1175/2010MWR3383.1
https://doi.org/10.1175/1520-0493(1999)127<1433:TEOARR>2.0.CO;2
https://doi.org/10.1175/1520-0493(1999)127<1433:TEOARR>2.0.CO;2
https://doi.org/10.5194/npg-21-1027-2014
https://ams.confex.com/ams/JOINTSATMET/meetingapp.cgi/Paper/371501
https://ams.confex.com/ams/JOINTSATMET/meetingapp.cgi/Paper/371501
https://doi.org/10.1175/1520-0469(1999)056<2004:EOTH>2.0.CO;2
https://doi.org/10.1175/1520-0469(1999)056<2004:EOTH>2.0.CO;2
https://doi.org/10.23919/ICIF.2018.8455276
https://doi.org/10.23919/ICIF.2018.8455276
https://doi.org/10.5067/LIS/LIS-OTD/DATA302
https://doi.org/10.1175/1520-0493(2002)130<0769:RISALC>2.0.CO;2
https://doi.org/10.1175/1520-0493(2002)130<0769:RISALC>2.0.CO;2
https://doi.org/10.1029/2010GL044558
https://doi.org/10.1175/WAF-D-21-0103.1
https://doi.org/10.1175/WAF-D-21-0103.1
https://doi.org/10.1175/MWR-D-20-0005.1
https://doi.org/10.1175/MWR-D-20-0005.1
https://doi.org/10.1175/1520-0434(1994)009<0209:ASHIPS>2.0.CO;2
https://doi.org/10.1175/1520-0434(1994)009<0209:ASHIPS>2.0.CO;2
https://doi.org/10.1175/MWR-D-11-00236.1
https://doi.org/10.1175/BAMS-D-12-00240.1
https://doi.org/10.1175/BAMS-D-12-00240.1
https://doi.org/10.3390/atmos12060683
https://doi.org/10.3390/atmos12060683
https://doi.org/10.1029/2020GL092067
https://doi.org/10.5194/nhess-22-539-2022
https://doi.org/10.5194/nhess-22-539-2022
https://doi.org/10.1175/MWR-D-18-0066.1
https://doi.org/10.1175/MWR-D-18-0421.1
https://doi.org/10.1175/MWR-D-18-0421.1
https://hfip.org/sites/default/files/events/269/330-franklin-verification-ripptx.pdf
https://hfip.org/sites/default/files/events/269/330-franklin-verification-ripptx.pdf
https://hfip.org/sites/default/files/events/269/330-franklin-verification-ripptx.pdf
https://doi.org/10.1175/BAMS-D-12-00071.1
https://doi.org/10.1175/BAMS-D-12-00071.1
https://doi.org/10.1175/1520-0434(2004)019<0633:AHOWNP>2.0.CO;2
https://doi.org/10.1175/1520-0434(2004)019<0633:AHOWNP>2.0.CO;2
https://doi.org/10.1016/j.atmosres.2013.01.006
https://doi.org/10.1256/qj.06.25
https://doi.org/10.1002/qj.3803
https://doi.org/10.1002/qj.3803
https://doi.org/10.1175/JCLI-D-12-00432.1
https://doi.org/10.1175/JCLI-D-12-00432.1


basin. Wea. Forecasting, 18, 1093–1108, https://doi.org/10.1175/
1520-0434(2003)018,1093:LCORIT.2.0.CO;2.

}}, and Coauthors, 2015: Evaluating environmental impacts on
tropical cyclone rapid intensification predictability utilizing
statistical models. Wea. Forecasting, 30, 1374–1396, https://doi.
org/10.1175/WAF-D-15-0032.1.

Knaff, J. A., C. R. Sampson, and M. DeMaria, 2005: An opera-
tional statistical typhoon intensity prediction scheme for the
western North Pacific. Wea. Forecasting, 20, 688–699, https://
doi.org/10.1175/WAF863.1.

}}, }}, }}, T. P. Marchok, J. M. Gross, and C. J. McAdie,
2007: Statistical tropical cyclone wind radii prediction using
climatology and persistence. Wea. Forecasting, 22, 781–791,
https://doi.org/10.1175/WAF1026.1.

}}, M. DeMaria, S. Longmore, and R. DeMaria, 2014a: Improv-
ing tropical cyclone guidance tools by accounting for variations
in size. 31th Conf. on Hurricanes and Tropical Meteorology,
San Diego, CA, Amer. Meteor. Soc., 51, https://ams.confex.
com/ams/31Hurr/webprogram/Paper244165.html.

}}, S. P. Longmore, and D. A. Molenar, 2014b: An objective
satellite-based tropical cyclone size climatology. J. Climate,
27, 455–476, https://doi.org/10.1175/JCLI-D-13-00096.1.

}}, C. R. Sampson, and G. Chirokova, 2017: A global statisti-
cal–dynamical tropical cyclone wind radii forecast scheme.
Wea. Forecasting, 32, 629–644, https://doi.org/10.1175/WAF-
D-16-0168.1.

}}, }}, and K. D. Musgrave, 2018: An operational rapid in-
tensification prediction aid for the western North Pacific.
Wea. Forecasting, 33, 799–811, https://doi.org/10.1175/WAF-
D-18-0012.1.

}}, }}, and B. R. Strahl, 2020: A tropical cyclone rapid inten-
sification prediction aid for the Joint Typhoon Warning Cen-
ter’s areas of responsibility. Wea. Forecasting, 35, 1173–1185,
https://doi.org/10.1175/WAF-D-19-0228.1.

}}, and Coauthors, 2021: Estimating tropical cyclone surface
winds: Current status, emerging technologies, historical evolu-
tion, and a look to the future. Trop. Cyclone Res. Rev., 10,
125–150, https://doi.org/10.1016/j.tcrr.2021.09.002.

Kumler-Bonfanti, C., J. Stewart, D. Hall, and M. Govett, 2020:
Tropical and extratropical cyclone detection using deep
learning. J. Appl. Meteor. Climatol., 59, 1971–1985, https://doi.
org/10.1175/JAMC-D-20-0117.1.

Landsea, C. W., 2022a: Updated Northeast/North Central HURDAT2
for 2021…with RMW. Tropical Communities, accessed
7 April 2022, http://tstorms.org/.

}}, 2022b: The revised Atlantic hurricane database (HURDAT2).
NOAA, 8 pp., https://www.nhc.noaa.gov/data/hurdat/hurdat2-
format-atl-1851-2021.pdf.

}}, and J. L. Franklin, 2013:Atlantic hurricane database uncertainty
and presentation of a new database format.Mon.Wea. Rev., 141,
3576–3592, https://doi.org/10.1175/MWR-D-12-00254.1.

Lay, E. H., R. H. Holzworth, C. J. Rodger, J. N. Thomas, O. Pinto
Jr., and R. L. Dowden, 2004:WWLL global lightning detection
system: Regional validation study in Brazil. Geophys. Res.
Lett., 31, L03102, https://doi.org/10.1029/2003GL018882.

MacGorman, D. R., and W. D. Rust, 1998: The Electrical Nature
of Storms. Oxford University Press, 422 pp.

Mansell, E. R., C. L. Ziegler, and D. R. MacGorman, 2007: A
lightning data assimilation technique for mesoscale forecast
models. Mon. Wea. Rev., 135, 1732–1748, https://doi.org/10.
1175/MWR3387.1.

Marks, F., N. Kurkowski, M. DeMaria, and M. Brennan, 2018:
NOAA Hurricane Forecast Improvement Project: Years ten

to fifteen strategic plan. NOAA, 83 pp., hfip.org/sites/default/
files/documents/hfip-strategic-plan-20190625.pdf.

Mauchly, S. J., 1923: On the diurnal variation of the potential gra-
dient of atmospheric electricity. Terr. Magn. Atmos. Electr.,
28, 61–81, https://doi.org/10.1029/TE028i003p00061.

Molinari, J., P. K. Moore, V. P. Idone, R. W. Henderson, and
A. B. Saljoughy, 1994: Cloud-to-ground lightning in Hurri-
cane Andrew. J. Geophys. Res., 99, 16 665–16676, https://doi.
org/10.1029/94JD00722.

}}, }}, and }}, 1999: Convective structure of hurricanes as
revealed by lightning locations.Mon. Wea. Rev., 127, 520–534,
https://doi.org/10.1175/1520-0493(1999)127,0520:CSOHAR.
2.0.CO;2.

NRL, 2020: ATCF probability format. NRL, accessed 16 August
2022, https://www.nrlmry.navy.mil/atcf_web/docs/database/
new/edeck.txt.

Pan, L., X. Qie, D. Liu, D. Wang, and J. Yang, 2010: The light-
ning activities in super typhoons over the northwest Pacific.
Sci. China Earth Sci., 53, 1241–1248, https://doi.org/10.1007/
s11430-010-3034-z.

}}, }}, and D. Wang, 2014: Lightning activity and its relation
to the intensity of typhoons over the northwest Pacific Ocean.
Adv. Atmos. Sci., 31, 581–592, https://doi.org/10.1007/s00376-
013-3115-y.

Price, C., M. Asfur, and Y. Yair, 2009: Maximum hurricane inten-
sity preceded by increase in lightning frequency. Nat. Geosci.,
2, 329–332, https://doi.org/10.1038/ngeo477.

RAMMB, 2021: SHIPS developmental data. Regional and Meso-
scale Meteorology Branch, Cooperative Institute for Research
in theAtmosphere,ColoradoStateUniversity, accessed 22April
2021, http://rammb.cira.colostate.edu/research/tropical_cycl
ones/ships/developmental_data.asp.

Rodger, C. J., J. B. Brundell, and R. L. Dowden, 2005: Location
accuracy of VLF World Wide Lightning Location (WWLL)
network: Post-algorithm update. Ann. Geophys., 23, 277–290,
https://doi.org/10.5194/angeo-23-277-2005.

}}, S. Werner, J. B. Brundell, E. H. Lay, N. R. Thompson,
R. H. Holzworth, and R. L. Dowden, 2006: Detection effi-
ciency of VLF World-Wide Lightning Location Network
(WWLLN): Initial case study. Ann. Geophys., 24, 3197–3214,
https://doi.org/10.5194/angeo-24-3197-2006.

Roebber, P. J., 2009: Visualizing multiple measures of forecast
quality. Wea. Forecasting, 24, 601–608, https://doi.org/10.1175/
2008WAF2222159.1.

Rogers, R. F., S. Lorsolo, P. Reasor, J. Gamache, and F. Marks,
2012: Multiscale analysis of tropical cyclone kinematic struc-
ture from airborne Doppler radar composites. Mon. Wea.
Rev., 140, 77–99, https://doi.org/10.1175/MWR-D-10-05075.1.

}}, P. Reasor, and S. Lorsolo, 2013: Airborne Doppler observa-
tions of the inner-core structural differences between intensi-
fying and steady-state tropical cyclones. Mon. Wea. Rev., 141,
2970–2991, https://doi.org/10.1175/MWR-D-12-00357.1.

}}, J. A. Zhang, J. Zawislak, H. Jiang, G. R. Alvey III, E. J.
Zipser, and S.N. Stevenson, 2016:Observations of the structure
and evolution of Hurricane Edouard (2014) during intensity
change. Part II: Kinematic structure and the distribution of
deep convection. Mon. Wea. Rev., 144, 3355–3376, https://doi.
org/10.1175/MWR-D-16-0017.1.

Rozoff, C. M., and J. P. Kossin, 2011: New probabilistic forecast
models for the prediction of tropical cyclone rapid intensifica-
tion. Wea. Forecasting, 26, 677–689, https://doi.org/10.1175/
WAF-D-10-05059.1.

WEATHER AND FORECAS T ING VOLUME 381226

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/02/23 02:48 PM UTC

https://doi.org/10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2
https://doi.org/10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2
https://doi.org/10.1175/WAF-D-15-0032.1
https://doi.org/10.1175/WAF-D-15-0032.1
https://doi.org/10.1175/WAF863.1
https://doi.org/10.1175/WAF863.1
https://doi.org/10.1175/WAF1026.1
https://ams.confex.com/ams/31Hurr/webprogram/Paper244165.html
https://ams.confex.com/ams/31Hurr/webprogram/Paper244165.html
https://doi.org/10.1175/JCLI-D-13-00096.1
https://doi.org/10.1175/WAF-D-16-0168.1
https://doi.org/10.1175/WAF-D-16-0168.1
https://doi.org/10.1175/WAF-D-18-0012.1
https://doi.org/10.1175/WAF-D-18-0012.1
https://doi.org/10.1175/WAF-D-19-0228.1
https://doi.org/10.1016/j.tcrr.2021.09.002
https://doi.org/10.1175/JAMC-D-20-0117.1
https://doi.org/10.1175/JAMC-D-20-0117.1
http://tstorms.org/
https://www.nhc.noaa.gov/data/hurdat/hurdat2-format-atl-1851-2021.pdf
https://www.nhc.noaa.gov/data/hurdat/hurdat2-format-atl-1851-2021.pdf
https://doi.org/10.1175/MWR-D-12-00254.1
https://doi.org/10.1029/2003GL018882
https://doi.org/10.1175/MWR3387.1
https://doi.org/10.1175/MWR3387.1
https://hfip.org/sites/default/files/documents/hfip-strategic-plan-20190625.pdf
https://hfip.org/sites/default/files/documents/hfip-strategic-plan-20190625.pdf
https://doi.org/10.1029/TE028i003p00061
https://doi.org/10.1029/94JD00722
https://doi.org/10.1029/94JD00722
https://doi.org/10.1175/1520-0493(1999)127<0520:CSOHAR>2.0.CO;2
https://doi.org/10.1175/1520-0493(1999)127<0520:CSOHAR>2.0.CO;2
https://www.nrlmry.navy.mil/atcf_web/docs/database/new/edeck.txt
https://www.nrlmry.navy.mil/atcf_web/docs/database/new/edeck.txt
https://doi.org/10.1007/s11430-010-3034-z
https://doi.org/10.1007/s11430-010-3034-z
https://doi.org/10.1007/s00376-013-3115-y
https://doi.org/10.1007/s00376-013-3115-y
https://doi.org/10.1038/ngeo477
http://rammb.cira.colostate.edu/research/tropical_cyclones/ships/developmental_data.asp
http://rammb.cira.colostate.edu/research/tropical_cyclones/ships/developmental_data.asp
https://doi.org/10.5194/angeo-23-277-2005
https://doi.org/10.5194/angeo-24-3197-2006
https://doi.org/10.1175/2008WAF2222159.1
https://doi.org/10.1175/2008WAF2222159.1
https://doi.org/10.1175/MWR-D-10-05075.1
https://doi.org/10.1175/MWR-D-12-00357.1
https://doi.org/10.1175/MWR-D-16-0017.1
https://doi.org/10.1175/MWR-D-16-0017.1
https://doi.org/10.1175/WAF-D-10-05059.1
https://doi.org/10.1175/WAF-D-10-05059.1


Rudlosky, S. D., S. J. Goodman, K. S. Virts, and E. C. Bruning, 2019:
Initial geostationary lightning mapper observations. Geophys.
Res. Lett., 46, 1097–1104, https://doi.org/10.1029/2018GL081052.

Rutledge, S. A., K. A. Hilburn, A. Clayton, B. Fuchs, and S. D.
Miller, 2020: Evaluating geostationary lightning mapper flash
rates within intense convective storms. J.Geophys. Res.Atmos.,
125, e2020JD032827, https://doi.org/10.1029/2020JD032827.

Sampson, C. R., and A. J. Schrader, 2000: The Automated Tropi-
cal Cyclone Forecasting System (version 3.2). Bull. Amer.
Meteor. Soc., 81, 1231–1240, https://doi.org/10.1175/1520-
0477(2000)081,1231:TATCFS.2.3.CO;2.

}}, J. L. Franklin, J. A. Knaff, andM. DeMaria, 2008: Experiments
with a simple tropical cyclone intensity consensus.Wea. Forecast-
ing, 23, 304–312, https://doi.org/10.1175/2007WAF2007028.1.

Schubert, W. H., and J. J. Hack, 1982: Inertial stability and tropi-
cal cyclone development. J. Atmos. Sci., 39, 1687–1697,
https://doi.org/10.1175/1520-0469(1982)039,1687:ISATCD.

2.0.CO;2.
Slocum, C. J., M. N. Razin, J. A. Knaff, and J. P. Stow, 2022:

Does ERA5 mark a new era for resolving the tropical cy-
clone environment? J. Climate, 35, 7147–7164, https://doi.org/
10.1175/JCLI-D-22-0127.1.

Stevenson, S. N., K. L. Corbosiero, and J. Molinari, 2014: The
convective evolution and rapid intensification of Hurricane
Earl (2010). Mon. Wea. Rev., 142, 4364–4380, https://doi.org/
10.1175/MWR-D-14-00078.1.

}}, }}, and S. F. Abarca, 2016: Lightning in eastern North
Pacific tropical cyclones: A comparison to the North Atlantic.
Mon. Wea. Rev., 144, 225–239, https://doi.org/10.1175/MWR-
D-15-0276.1.

}}, }}, M. DeMaria, and J. L. Vigh, 2018: A 10-year survey of
tropical cyclone inner-core lightning bursts and their relationship

to intensity change. Wea. Forecasting, 33, 23–36, https://doi.org/
10.1175/WAF-D-17-0096.1.

Stolz, D. C., S. A. Rutledge, and J. R. Pierce, 2015: Simultaneous
influences of thermodynamics and aerosols on deep convec-
tion and lightning in the tropics. J. Geophys. Res. Atmos.,
120, 6207–6231, https://doi.org/10.1002/2014JD023033.

Torn, R. D., and C. Snyder, 2012: Uncertainty of tropical cyclone
best-track information. Wea. Forecasting, 27, 715–729, https://
doi.org/10.1175/WAF-D-11-00085.1.

Vagasky, C., 2017: Enveloped eyewall lightning: The EEL signa-
ture in tropical cyclones. J. Oper. Meteor., 5, 171–179, https://
doi.org/10.15191/nwajom.2017.0514.

Virts, K. S., andW. J. Koshak, 2020: Mitigation of geostationary light-
ning mapper geolocation errors. J. Atmos. Oceanic Technol., 37,
1725–1736, https://doi.org/10.1175/JTECH-D-19-0100.1.

Wilks, D. S., 2019: Statistical Methods in the Atmospheric Sciences.
4th ed. Elsevier, 840 pp.

Xu,W., S. A.Rutledge, andW. Zhang, 2017: Relationships between
total lightning, deep convection, and tropical cyclone intensity
change. J. Geophys. Res. Atmos., 122, 7047–7063, https://doi.
org/10.1002/2017JD027072.

Zawislak, J., H. Jiang, G. R. Alvey III, E. J. Zipser, R. F. Rogers,
J. A. Zhang, and S. N. Stevenson, 2016: Observations of the
structure and evolution of Hurricane Eduoard (2014) during
intensity change. Part I: Relationship between the thermody-
namic structure and precipitation. Mon. Wea. Rev., 144,
3333–3354, https://doi.org/10.1175/MWR-D-16-0018.1.

Zhang, W., Y. Zhang, D. Zheng, and L. Xu, 2015: Relationship
between lightning activity and tropical cyclone intensity over
the northwest Pacific. J. Geophys. Res. Atmos., 120, 4072–
4089, https://doi.org/10.1002/2014JD022334.

O P S NO T E S 1227JULY 2023

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/02/23 02:48 PM UTC

https://doi.org/10.1029/2018GL081052
https://doi.org/10.1029/2020JD032827
https://doi.org/10.1175/1520-0477(2000)081<1231:TATCFS>2.3.CO;2
https://doi.org/10.1175/1520-0477(2000)081<1231:TATCFS>2.3.CO;2
https://doi.org/10.1175/2007WAF2007028.1
https://doi.org/10.1175/1520-0469(1982)039<1687:ISATCD>2.0.CO;2
https://doi.org/10.1175/1520-0469(1982)039<1687:ISATCD>2.0.CO;2
https://doi.org/10.1175/JCLI-D-22-0127.1
https://doi.org/10.1175/JCLI-D-22-0127.1
https://doi.org/10.1175/MWR-D-14-00078.1
https://doi.org/10.1175/MWR-D-14-00078.1
https://doi.org/10.1175/MWR-D-15-0276.1
https://doi.org/10.1175/MWR-D-15-0276.1
https://doi.org/10.1175/WAF-D-17-0096.1
https://doi.org/10.1175/WAF-D-17-0096.1
https://doi.org/10.1002/2014JD023033
https://doi.org/10.1175/WAF-D-11-00085.1
https://doi.org/10.1175/WAF-D-11-00085.1
https://doi.org/10.15191/nwajom.2017.0514
https://doi.org/10.15191/nwajom.2017.0514
https://doi.org/10.1175/JTECH-D-19-0100.1
https://doi.org/10.1002/2017JD027072
https://doi.org/10.1002/2017JD027072
https://doi.org/10.1175/MWR-D-16-0018.1
https://doi.org/10.1002/2014JD022334

